Anisotropic shear stress patterns predict the orientation of convergent tissue movements in the embryonic heart
نویسندگان
چکیده
Myocardial contractility and blood flow provide essential mechanical cues for the morphogenesis of the heart. In general, endothelial cells change their migratory behavior in response to shear stress patterns, according to flow directionality. Here, we assessed the impact of shear stress patterns and flow directionality on the behavior of endocardial cells, the specialized endothelial cells of the heart. At the early stages of zebrafish heart valve formation, we show that endocardial cells are converging to the valve-forming area and that this behavior depends upon mechanical forces. Quantitative live imaging and mathematical modeling allow us to correlate this tissue convergence with the underlying flow forces. We predict that tissue convergence is associated with the direction of the mean wall shear stress and of the gradient of harmonic phase-averaged shear stresses, which surprisingly do not match the overall direction of the flow. This contrasts with the usual role of flow directionality in vascular development and suggests that the full spatial and temporal complexity of the wall shear stress should be taken into account when studying endothelial cell responses to flow in vivo.
منابع مشابه
The Effects of in ovo Nanocurcumin Administration on Oxidative Stress and Histology of Embryonic Chicken Heart
This study was designed to evaluate the effects of nanocurcumin (NC) on oxidative stress and histology of embryonic chicken heart. NC was injected into the yolk of 4-day-old embryonic eggs at one of three doses: 10 ppm (NC10 group), 100 ppm (NC100 group), and 1000 ppm (NC1000 group). The control group received normal saline. Oxidative stress in heart tissue was evaluated by measuring malondiald...
متن کاملConstitutive Model for Multi-laminate Induced Anisotropic Double Hardening Elastic-plasticity of Sand
A constitutive multi-laminate based elastic-plastic model developed to be capable of accounting induced anisotropic behavior of granular material such as sand. The fabric feature or grain orientation characteristic effects through medium are considered in a rational way under any complex stress path, including cyclic loading. The salient feature of the developed model is a non-associative on pl...
متن کاملFinite element simulation of pyroplastic deformation, anisotropic shrinkage and heterogeneous densification for ceramic materials during liquid phase sintering process
Pyroplastic deformation is a distortion of the ceramic shape during the sintering process. It occurs because the flow of the vitreous phase at high temperature and the applied stress due to the weight of the product during sintering process. The aim of this paper deals with describing a numerical-experimental method to evaluate the pyroplastic deformation, to predict the anisotropic shrinkage a...
متن کاملEffects of Degree of Consolidation and Anisotropic Consolidation Stresses on Shear Modulus and Damping Ratio of Cohesive Soils at Low Strain
During consolidation process of saturated cohesive soil the soil stiffness increases. Increase of the effective stress due to dissipation of excess pore pressure causes additional stiffness of soil mass. This phenomenon has a very important effect on the behavior of saturated cohesive soils during dynamic loading. In the current investigation the changes in maximum shear modulus. Gmax and dampi...
متن کاملInfluence of Rigidity, Irregularity and Initial Stress on Shear Waves Propagation in Multilayered Media
The propagation of shear waves in an anisotropic fluid saturated porous layer over a prestressed semi-infinite homogeneous elastic half-space lying under an elastic homogeneous layer with irregularity present at the interface with rigid boundary has been studied. The rectangular irregularity has been taken in the half-space. The dispersion equation for shear waves is derived by using the pertur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 144 شماره
صفحات -
تاریخ انتشار 2017